메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이지민 (포항공과대학교) 이진식 (포항공과대학교) 이근배 (포항공과대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 소프트웨어 및 응용 정보과학회논문지 : 소프트웨어 및 응용 제38권 제4호
발행연도
2011.4
수록면
207 - 213 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 의존 구조 분석기 통합을 위해 입력 문장의 특성을 활용하는 분배기를 제안한다. 본 모델은 구성 의존 구조 분석기 중에서 입력 문장을 가장 잘 분석할 수 있는 의존 구조 분석기를 선택하고, 선택된 의존 구조 분석기의 결과를 최종 결과로 사용한다. 이 모델을 구현하는 구체적인 방법으로 문장 수준 분배기와 단어 수준 분배기를 제안한다. 6개 언어에 대해서 제안 방법의 성능을 측정했다. 문장 수준 분배기는 MALT에 비해서 평균 2.03%, MST에 비해서 평균 0.59%의 성능 향상이 있었다. 단어 수준 분배기는 MALT에 비해서 평균 1.98%, MST에 비해서 평균 0.54%의 성능 향상이 있었다. 추가로, 본 방법론은 구성 의존 구조 분석기의 수의 관계없이 한번만 파싱을 하기 때문에 기존의 통합 방법론들에 비해서 속도상 강점을 가진다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 문장 분배하기
4. 실험
5. 토론
6. 결론
참고문헌

참고문헌 (15)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-569-004458812