메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 대한기계학회 논문집 A권 대한기계학회논문집 A권 제32권 제11호
발행연도
2008.11
수록면
990 - 996 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Nowadays, the trend to a lightweight design accelerates the use of advanced high strength steel (AHSS) in automotive industry. Springback phenomena is a hot issue in the sheet metal forming, especially bending process using AHSS. Several analytical methods for that have been proposed in recent years. Each of method has their advantages and disadvantages. There are only a few optimal solutions which can minimize the two objectives simultaneously. In this study, an effective method optimized the multi objective value. The method by the design of experiments(DOE) and artificial neural network(ANN) was presented to compensate springback of bending parts. This method was applied to L and V bending process. The effective method could be optimized to multiple object. It was confirmed that the proposed method was more efficient than traditional manual FEA procedure and the trial and error approach for springback compensation.

목차

Abstract
1. 서론
2. 최적화 방법
3. 초기공정 조건설정
4. L형 굽힘공정 최적화
5. V형 굽힘공정 최적화
6. 최적화 기법적용에 대한 고찰
7. 결론
후기
참고문헌

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0