메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제18권 제4호
발행연도
2008.8
수록면
501 - 505 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
통계적 방식의 품사부착 문제는 보통 N-그램과 같은 단일 통계정보를 활용하지만 단순한 통계 정보라는 원천적인 한계가 있어 많은 오류가 발생한다. 따라서 다양한 정보를 활용하는 것이 정확도를 높일 가능성이 있다는 데는 이론의 여지가 없다. 그러나 다른 종류의 통계 자료는 배타적 자료가 아닌 한 상충되는 정보를 가질 수밖에 없으므로 이러한 정보들로부터 어떻게 종합적인 결론을 내는가가 문제이다.
본 논문에서는 이러한 상이한 통계정보를 통합하는 방법으로 언어 모델의 구성에서 활용된 바 있는 최대엔트로피 모델의 한국어 품사 부착에의 사용 가능성을 제시한다. 여기서는 이종의 통계정보로서 N그램과, 트리거 쌍을 사용하게 된다. 이러한 트리거 쌍 통계정보를 N그램과 함께 최대엔트로피 모델링을 했을 경우 퍼플렉시티가 어떻게 변화하는지에 대한 실험 결과를 관찰하게 될 것이다. 트리거 쌍은 또한 다양하게 문맥사이즈를 변화할 수 있으며, N그램의 확률 모델도 다양하기 때문에 여러 종류의 실험을 통한 많은 향상을 예상 할 수 있다. 본 실험에서는 단일 모델 사용시 94.9 %의 정확도를 가진 3-그램 모델에 트리거 쌍을 최대 엔트로피 방식으로 추가한 경우 95.6%의 정확도를 보여 0.7% 포인트의 정확도 향상을 기록하였다. 따라서 향후 다양한 정보원을 개발하여 최대엔트로피 방식으로 통합할 경우 지속적인 정확도 향상을 가져올 수 있는 가능성을 보여준다고 할 수 있다.

목차

요약
Abstract
1. 서론
2. N그램 은닉 마코프 모델과 트리거쌍
3. 최대 엔트로피 모델
4. 실험 결과
5. 결론
참고문헌
저자소개

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0