메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
품사 결정 문제는 자연언어처리의 가장 기본적인 문제들 중 하나이며, 기계학습의 관점에서 보면 분류 문제(classification problem)로 쉽게 표현된다. 본 논문에서는 품사 결정의 모호성을 해소하기 위해서 최대 엔트로피 부스팅 모델(maximum entropy boosting model)을 이 문제에 적용하 ... 전체 초록 보기

목차

요약

1. 서론

2. 최대 엔트로피 부스팅 모델

3. 최대 엔트로피 모델에 의한 품사 결정

4. 실험

5. 결론

감사의 글

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017894687