메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제18권 제3호
발행연도
2008.6
수록면
354 - 359 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
클러스터링은 주어진 임의의 데이터 중에서 유사한 성질을 지닌 데이터를 복수개의 그룹으로 조직화하는 기법이다. 이를 위해 K-Means, Fuzzy C-Means(FCM), Mountain Method(MM) 등과 같은 많은 기법들이 제안되었고 또한 널리 사용되어 지고 있다. 그러나 이러한 기법들은 초기값에 따라 클러스터링 결과가 크게 달라지는 단점이 있다. 특히 가장 널리 사용되는 FCM 기법은 잡음 데이터에 취약하며, 주어진 입력 데이터의 클러스터 내부분산을 최소화 하는 방법을 사용하기 때문에 클러스터링 중심의 왜곡 현상이 발생한다. 본 논문에서는 데이터 가중치에 근거한 비례적 근접데이터 병합을 통하여 클러스터 중심 왜곡을 저감하며 초기값에 영향을 받지 않는 클러스터링 기법을 제안한다. 그리고 FCM으로 얻어진 클러스터 중심과 제안기법을 적용하여 얻어진 클러스터 중심에 대한 비교 검토를 통하여 제안기법의 효용성을 확인한다.

목차

요약
Abstract
1. 서론
2. Fuzzy C-Means
3. 제안 클러스터 기법
4. 모의실험 및 고찰
5. 결론
참고문헌
저자소개

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0