메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 電子工學會論文誌 CI編 第45卷 第6號
발행연도
2008.11
수록면
179 - 186 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 베이지안 알고리즘이 불균형 데이터의 학습 시 나타나는 현상을 분석하고 성능 평가 방법을 비교하였다. 사전 데이터 분포를 가정하고 불균형 데이터 비율과 분류 복잡도에 따라 발생된 분류 문제에 대해 베이지안 학습을 수행하였다. 실험 결과는 ROC(Receiver Operator Characteristic)와 PR(Precision-Recall) 평가 방법의 AUC(Area Under the Curve)를 계산하여 불균형 데이터 비율과 분류 복잡도에 따라 분석되었다. 비교 분석에서 불균형 비율은 기 수행된 연구 결과와 같이 베이지안 학습에 영향을 주었으며, 높은 분류 복잡도로부터 나타나는 데이터 중복은 학습 성능을 방해하는 요인으로 확인되었다. PR 평가의 AUC는 높은 분류 복잡도와 높은 불균형 데이터 비율에서 ROC 평가의 AUC보다 학습 성능의 차이가 크게 나타났다. 그러나 낮은 분류 복잡도와 낮은 불균형 데이터 비율의 문제에서 두 측정 방법의 학습 성능의 차이는 미비하거나 비슷하였다. 이러한 결과로부터 PR 평가의 AUC는 클래스 불균형 문제의 학습 모델의 설계와 오분류 비용을 고려한 최적의 학습기를 결정하는데 도움을 줄 수 있다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 클래스 불균형 문제
Ⅲ. 클래스 불균형 문제의 학습 평가
Ⅳ. 실험
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0