메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이 논문에서는 SPARQL로 작성된 OWL-DL 온톨로지 질의에 대한 재작성 알고리즘을 제안한다. 현재 웹 온톨로지 저장소는 주어진 SPARQL 질의의 추론 결과를 얻기 위해 추론 온톨로지 모델을생성하고 SPARQL 질의와 생성된 추론 온톨로지 모델과의 일치성을 비교한다. 추론 모델은 베이스 온톨로지 모델에 비해 보다 큰 공간을 필요로 하고 다른 추론 질의를 위해 재사용될 수 없기 때문에 앞서 언급한 접근 방법은 보다 방대한 크기의 SPARQL 질의 처리에 부적합하다. 이러한 문제점을 해결하기 위해 이 논문에서는 SPARQL 질의를 재작성하고 이를 기본 베이스 온톨로지 모델에 대해 질의 연산을 수행하여 결과를 획득할 수 있는 SPARQL 재작성 알고리즘을 제안한다. 이러한 목적을 이루기 위해, 먼저 OWL-DL 추론 규칙을 정의하고 이를 질의 그래프 패턴 재작성에 적용한다. 또한 추론 규칙들을 분류하고 이러한 규칙들이 질의 재작성에 미치는 영향에 대하여 기술한다. 제안 알고리즘의 장점을 보이기 위해, Jena 기반의 프로토타입 시스템을 구현한다. 비교 평가를 위해 테스트 질의를 이용하여 실험을 수행하고 제안 방법과 기존 접근 방법을 비교한다. 실험 결과에서, 제안 알고리즘이 완전성 및 정확성의 손실없이 메모리 공간 및 온톨로지 로딩 측면에서 향상된 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 사전 정의
3. 그래프 패턴 재작성 접근 방법
4. 온톨로지 추론 규칙
5. 트리플 패턴 재작성
6. 실험 및 평가
7. 결론 및 향후 연구
참고문헌

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0