메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 2008년도 한국방송공학회 학술대회
발행연도
2008.11
수록면
81 - 84 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 센서네트워크와 같은 에너지 제한 환경을 위한 경량화 부호화 기술의 필요성이 대두됨에 따라 분산 소스 부호화 기술(Distributed Source Coding)의 응용기술로 비디오 부호화 복잡도의 대부분을 차지하는 움직임 예측/보상과정을 부호화기가 아닌 복호화기에서 수행하는 분산 비디오 부호화 기술(Distributed Video Coding)에 대한 연구가 활발히 이루어져 왔다. 이에 가장 대표적인 기술인 Wyner-Ziv 코딩 기술은 채널 코드를 이용하여 원본 프레임과 이에 대한 복호화기의 예측영상인 보조정보 사이의 잡음을 제거하여 영상을 복원한다. 일반적으로 보조정보는 원본영상에 유사한 키 프레임간의 프레임 보간을 통하여 생성되며 채널 코드는 Shannon limit에 근접한 성능을 보이는 Turbo 코드나 LDPC 코드가 사용된다. 이와 같은 채널 코드의 복호화는 채널 잡음 모델에 기반하여 수행되어지며 Wyner-Ziv 코딩 기술에서는 이 채널 잡음 모델을 ‘상관 잡음모델' (Correlation Noise Modeling)이라 하고 일반적으로 Laplacian이나 Gaussian으로 모델화 한다. 하지만 복호화기에는 원본 영상에 대한 정보가 없기 때문에 정확한 상관 잡음 모델을 알 수 없으며 잡음 모델에 대한 예측의 부정확성은 잡음 제거를 위한 패리티 비트의 증가를 야기해 부호화 기술의 압축 성능 저하를 가져온다. 이에 본 논문은 원본 프레임과 보조정보 사이의 잡음을 정확하게 예측하여 잡음을 정정할 수 있는 향상된 상관 잡음 모델을 제안한다. 제안 방법은 잘못된 잡음 예측에 의해 Laplacian 계수가 너무 커지는 것을 방지하면서 영상내의 잡음의 유무에 별다른 영향을 받지 않는 새로운 문턱값을 사용한다. 다양한 영상에 대한 제안 방법의 실험 결과는 평균적으로 약 0.35dB에 해당하는 율-왜곡 성능 향상을 보여주었다.

목차

요약
1. 서론
2. 변환영역 Wyner-Ziv 비디오 부호화
3. 제안하는 상관 잡음 모델
4. 실험 방법 및 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-568-015708087