메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제9권 제2호
발행연도
2009.2
수록면
18 - 26 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
규칙 정보와 통계 정보를 이용하는 복합적 품사 태깅은 통계를 기반으로 하는 방법의 견고함과 확장성을 가지고, 통계 정보에 벗어나는 언어현상들을 규칙 정보를 이용하여 해결함으로서 높은 정확도를 가질 수 있다. 하지만 기존의 연구는 규칙 정보의 제한적인 적용범위 때문에 통계 정보에 벗어나는 언어 현상을 처리할 수 없는 경우가 발생하게 된다. 본 논문에서는 이를 해결하기 위하여 어휘의 사전적 의미와 문맥적 관계를 반영할 수 있는 “어휘별 중의성 제거 규칙”을 제안한다. 어휘별 중의성 제거 규칙은 세종 말뭉치로부터 말뭉치 데이터를 형태소 분석하여 상위 50%의 중의성 어휘에 대한 사전적 의미와 문맥적 관계를 고려한 품사 태깅 정보를 추출하고 이것을 규칙으로 만든 것이며, 현재까지 총 1,815개로 구성되어 있다. 어휘별 중의성 제거 규칙을 기존의 복합적 품사 태깅 시스템에 적용하여 품사 태깅의 정확도를 높일 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 기존의 품사 태깅
Ⅲ. 어휘별 중의성 제거 규칙
Ⅳ. 품사 태깅 시스템의 설계
Ⅴ. 실험결과
Ⅵ. 결론
Ⅶ. 부록
참고문헌
저자소개

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-004-001716280