메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
李大鍾 (충북대학교) 李鍾弼 (충북대학교) 池平植 (충북대학교) 林栽尹 (대덕대학)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제56권 제6호
발행연도
2007.6
수록면
1,007 - 1,016 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In power system, substation facilities have become too complex and larger according to an extended power system. Also, customers require the high quality of electrical power system. However, some facilities become old and often break down unexpectedly. The unexpected failure may cause a break in power system and loss of profits. Therefore it is important to prevent abrupt faults by monitoring the condition of power systems. Among the various power facilities, power transformers play an important role in the transmission and distribution systems. In this research, we develop intelligent diagnosis technique for predicting faults of power transformer by FCM(Fuzzy c-means) and Euclidean based distance measure. The proposed technique make it possible to measures the possibility and degree of aging as well as the faults occurred in transformer. To demonstrate the validity of proposed method, various experiments are performed and their results are presented.

목차

Abstract
1. 서론
2. 유중가스법을 이용한 변압기 진단 및 문제점 분석
3. 퍼지 군집화 알고리즘을 이용한 고장진단 알고리즘
4. 실험 및 결과
5. 결론
감사의 글
참고문헌
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-560-019040517