메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한토목학회 KSCE JOURNAL OF CIVIL ENGINEERING KSCE JOURNAL OF CIVIL ENGINEERING Vol.10 No.5
발행연도
2006.9
수록면
371 - 380 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The objective of multi reservoir system optimization is to achieve an optimal reservoir operating plan by the effective use of water resources. Many optimization techniques have been applied for the last decades, and researchers have recently interested in the heuristic approaches like evolutionary computation. This study proposes a methodology for applying multi-objective genetic algorithms (MOGAs) to a multireservoir system optimization in the Han River basin. The second generation evolutionary multi-objective technique, NSGA-Ⅱ, is used. The simulation model is applied to the Han River basin and the performance of the model is compared with the historical reservoir operation records. Two different cases are performed to evaluate the applicability of NSGA-Ⅱ. Case 1 shows the basic performance of NSGA-Ⅱ as applied to multireservoir system optimization, and Case 2 presents the methodology to discriminate the critical decision variables. In addition, the alternative releases and storages by NSGA-Ⅱ are compared with the historical releases and storages. Cases 1 and 2 show that NSGA-Ⅱ can be applied to multireservoir system optimization, and the alternative releases and storages computed using the results from NSGA-Ⅱ can be used as the possible reservoir operating plans that supply more water resources to downstream than the historical releases.

목차

Abstract
1. Introduction
2. Case Study Area: Han River Basin
3. Coding Scheme of Genetic Algorithms, Mass Balance Equation, Objective Functions and Constraints
4. NSGA-Ⅱ Applications in the Han River Basin
5. Alternative Reservoir Operating Plans Compared with Historical Records
6. Conclusions
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-531-019098703