메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Song-You Hong (연세대학교) Suryun Ham (연세대학교) Young-Hwa Byun (기상청) Jhoon Kim (연세대학교)
저널정보
한국기상학회 Asia-Pacific Journal of Atmospheric Sciences Asia-Pacific Journal of Atmospheric Sciences Vol.45 No.4
발행연도
2009.11
수록면
391 - 409 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Incorporation of the prognostic microphysics scheme to model the grid-resolvable precipitation physics in general circulation models (GCMs) influences the simulated climatology in various ways: 1) the microphysics effect that represents clouds and precipitation processes with ice phases in the bulk microphysics scheme, 2) the cloudiness effect that considers the ice-phase properties in computing fractional cloudiness, 3) the radiation property effect that considers the ice-cloud properties in the radiation algorithm, and 4) the detrainment effect that considers the detrained liquid species from the convective clouds into the stratiform clouds. The individual role of these processes is investigated on a single column model (SCM) and seasonal simulation framework to improve our understanding of the ice-cloud radiation interaction in GCMs. In both the SCM and GCM simulations, the microphysics effect reduces large-scale precipitation, whereas the corresponding temperature changes are not distinct in the GCM simulations. The cloudiness effect is relatively insignificant in both testbeds. The radiation property effect plays an important role in modulating the temperature and moisture in both testbeds by directly influencing the radiative fluxes. The convective cloud detrainment effect reduces the global-mean precipitation significantly in the GCM simulation, whereas its effect is negligible in the SCM testbed. Our study demonstrates that an understanding of the fundamental characteristics of microphysics and associated cloudiness, radiation properties, and their interaction in modulating large-scale features is pre-requisite to the successful implementation of a specific prognostic cloud scheme in GCMs.

목차

Abstract
1. Introduction
2. Experiment setup
3. Single-column experiments
4. Seasonal simulations
5. Concluding Remarks
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-453-019158841