메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김진환 (동의대학교)
저널정보
한국전산유체공학회 한국전산유체공학회 학술대회논문집 한국전산유체공학회 2009년도 추계학술대회 논문집
발행연도
2009.11
수록면
49 - 55 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (15)

초록· 키워드

오류제보하기
This paper evaluates performances of a recently developed divergence-free finite element method based on Hermite interpolated stream functions. Velocity bases are derived from Hermite interpolated stream functions to form divergence-Fee basis functions. These velocity basis functions constitute a solenoidal function space, and the simple gradient of the Hermite functions constitute an irrotational function space. The incompressible Navier-Stokes equation is orthogonally decomposed into a solenoidal and an irrotational parts, and the decoupled Navier-Stokes equations are projected onto their corresponding spaces to form proper variational formulations. To access accuracy and convergence of the present algorithm, three test problems are selected. They are lid-driven cavity flow, flow over a backward-facing step and buoyancy-driven flow within a square enclosure. Hermite interpolation functions from cubic to quintic are chosen to run the test problems. Numerical results are shown. In all cases it has shown that the present method has performed well in accuracies and convergences. Moreover, the present method does not require an up winding or a stabilized term.

목차

1. 서론
2. 사변형 요소에 대한 보간 함수
3. 무발산 요소의 정식화
4. 수치계산
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-422-019183065