메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김진환 (동의대학교)
저널정보
한국전산유체공학회 한국전산유체공학회지 한국전산유체공학회지 제14권 제4호
발행연도
2009.12
수록면
67 - 77 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper is a continuation of a recent development on the Hermite-based divergence-free element method and deals with a non-isothermal fluid flow driven by the buoyancy force in a square cavity with temperature difference across the two sides. Two Hermite functions are considered for numerical computations in this paper. One is a cubic function and the other is a quartic function. The degrees-of-freedom of the cubic Hermite function are stream function and its first and second derivatives for the velocity field, and temperature and its first derivatives for the temperature field. The degrees-of-freedom of the quartic Hermite function include two second derivatives and one cross derivative of the stream function in addition to the degrees-of-freedom of the cubic stream function. This paper presents a brief review on the Hermite based divergence-free basis functions and its finite element formulations for the buoyancy driven flow. The present algorithm does not employ any upwinding or a stabilization term. However, numerical values and contour graphs for major flow variables showed good agreements with those by De Vahl Davis[6].

목차

1. 서론
2. 사변형 요소에 대한 무발산 보간 함수
3. 문제 정의와 무차원 방정식
4. 자연대류 방정식의 유한요소 정식화
5. 수치 계산 결과 및 고찰
6. 결론
부록 : Hermite 4차 회전 보간 함수(S4424)
참고문헌

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-422-002059551