메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yiping Dong (Waseda University) Yinghe Li (Waseda University) Yang Wang (Waseda University) Takahiro Watanabe (Waseda University)
저널정보
대한전자공학회 ITC-CSCC :International Technical Conference on Circuits Systems, Computers and Communications ITC-CSCC : 2009
발행연도
2009.7
수록면
298 - 301 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Back Propagation Artificial Neural Network (BP-ANN), one of widely used neural networks, has been used in a lot of areas. Hardware architecture of BP-ANN was proposed by using an NoC (Network on Chip) and implemented on FPGA. In this paper, new NoC architecture which has a torus topology and IXY (Intelligent XY) routing algorithm is developed for BP-ANN to make it low power and high performance. This system is implemented by FPGA to estimate system performance and power consumption. NIRGAM NoC simulator is also used to evaluate latency and throughput of this system. Experimental results show that our proposed architecture can increase Connection Per Second (CPS) about 2 times than existing digital hardware ANN; it can reduce communication load which total packet size can reduce about 3.2 times compared with traditional packet transmit method of BP-ANN. It can reduce latency by 23.7% and dynamic power consumption by 7.2% compare with the former NoC architecture BP-ANN. It is reconfigurable and expandable to meet various ANN applications. Furthermore other type ANNs can also be implemented in the system by adjusting a routing algorithm of NoCs.

목차

Abstract
1. Introduction
2. Procedure of basic NoC design for BP-ANN
3. New NoC architectures for BP-ANN
4. Evaluation of new systems
5. Conclusion
Acknowledgement
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-569-004020407