메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한건축학회 대한건축학회 논문집 - 구조계 大韓建築學會論文集 構造系 第19卷 第4號
발행연도
2003.4
수록면
81 - 87 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the previous publication, author proposed the I-PreConS (Intelligent PREdiction system of CONcrete Strength) using artificial neural networks (ANN) that provides in-place strength information of the concrete to facilitate concrete form removal and scheduling for construction. The serious problem of the system is occured, which it cannot appropriately predict the concrete strength when the curing temperature of a specific curing day is changed. This is because it uses the single neural networks, which all nodes are fully connected, and thus it can show too plastic response. As a trial to solve this problem, modular ANN is introduced, which has multiple architecture composed of five ANNs. ANN-I predicts the early concrete strength within 24 hours after pouring. From ANN-II to ANN-V predict the concrete strength at 2nd to 28th day after pouring. Through simulation study, the optimum architectures for individual five ANNs are determined and the best way for inter-connection between five ANNs is presented. As in previous study, the weighting technique and parameter condensation are effectively used in simulation study.

목차

Abstract
1. 서론
2. 신경망 모델
3. 신경망 모델 개발 단계
4. 시뮬레이션 결과 및 분석
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-540-018424493