메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김희승 (서울시립대학교) 배병규 (서울시립대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제13권 제3호
발행연도
2010.3
수록면
378 - 391 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 손가락 면의 영상으로 개인 식별이 가능한지를 실험하고 그 결과를 제시하였다. 이를 위하여 구배치(gradient)를 산출할 수 있는 오퍼레이터인 FFG 마스크(Facet Function Gradient mask)를 사용하고, F-알고리즘이라 명명한 새로운 방법으로 매칭 처리를 하였다. 이 알고리즘에서 손가락 면의 영상을 일정한 크기의 부영역(subregion)으로 나누고, 부영역은 다시 일정한 크기의 패치(patch)들로 나눈다. 각 패치에 같은 크기의 FFG 마스크들을 컨벌루션시키고, 마스크 별로 하나의 수치를 얻는다. 이들 수치를 특징매트릭스(feature matrix)로 삼고, norm에 의하여 동일인 여부를 판정한다. 두 개의 손 영상이 동일인의 것인 경우와 그렇지 않은 경우에 FFG 컨벌루션 수치 차 제곱 총화의 분포를 관찰한 결과 뚜렷한 차별성을 보였다. 이것은 손가락 면 영상의 식별 능력을 입증하는 결과이다. 100명의 손 영상을 5벌씩 촬영한 500장의 영상을 F-알고리즘에 의하여 실험한 결과 95.0%의 개인 식별률을 얻었다. 이러한 식별 능력과 식별률에 비추어 손가락 면(finger face)은 다른 biometric들과 대등한 수준으로 개인 식별을 위한 biometrics의 하나로 손색이 없음을 말할 수 있다.

목차

요약
ABSTRACT
1. 서론
2. 관련 연구
3. 손가락 면의 영상
4. FFG 연산과 이를 이용한 여러 가지 알고리즘
5. 손가락 면의 FFG 연산자에 의한 식별성
6. 실험 결과
7. 결론
참고문헌

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004443446