메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이미희 (창신대학) 우용태 (창원대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제11권 제9호
발행연도
2008.9
수록면
1,213 - 1,226 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
??추천시스템은 사용자가 제공한 선호, 관심, 구매경험과 같은 정보를 근거로 하여 다른 사용자에게 가장 알맞은 정보를 제공하는 일련의 가치교환 과정인 개인화를 가능하게 하는 시스템으로 고객의 선호도를 정확히 분석하고, 정제하여 정확한 예측력으로 고객이 원하는 가장 적절한 상품을 추진 해줄 수 있어야 한다. 대부분의 추천시스템들이 협동적 필터링 기법을 적용하고 있어 본 논문에서는 협동적 필터링 기법의 연산 수행 량을 개선한 새로운 결합 모델인 SOM(Self-Organizing Map) 신경망 회로와 결합한 추천시스템을 제안하였다. 먼저, 사용자 그룹을 인구통계학적인 특징으로 세그먼트하고 SOM 신경망회로를 이용하여 Item 특정에 대한 선호도를 입력 값으로 학습하여 클러스터를 생성하였다. 임의의 사용자에 대한 추천은 선호도가 유사한 클러스터를 결정하여 협동적 필터링 기법을 적용하였으며, 기존의 협동적 필터링 기법의 연산 수행 량과 비교 분석하였다. 또한 영화를 대상으로 한 실험을 통하여 추천효율이 향상되었음을 나타내었다.

목차

요약
ABSTRACT
1. 서론
2. 관련연구
3. 협동적 필터링 기법과 결합 모델
4. SOM 신경회로망과 협동적 필터링 기법을 이용한 결합 추천 모델
5. 협동적 필터링 기법과 제안 모델과의 성능 비교
6. 제안 모델과 기존 기법의 추천 효율 비교 분석
7. 결론
참고문헌

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004430669