메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 전자상거래에서 대부분의 개인화 된 추천 시스템들은 고객의 취향에 맞는 적절한 상품을 추천하기 위하여 협동적 필터링 기술을 적용하고 있다. 사용자 기반 협동적 필터링은 특정 고객의 선호도와 가장 유사한 선호도를 가지는 고객 그룹의 선호도를 바탕으로 그 고객의 특정 상품에 대한 선호도를 예측하는 기법이다. 그러나 이 방법은 두 고객이 모두 평가를 한 상품이 있어야 하고 오직 두 고객 사이에서만 상관 관계를 구할 수 있으므로 예측의 정확성이 떨어질 가능성이 있다.
아이템 기반 협동적 필터링은 고객이 선호도를 입력한 기존의 상품들과 예측하고자 하는 상품의 상관관계를 계산하여 선호도를 예측한다. 이 방법에서는 상품들간의 유사도를 계산하기 위하여 두 상품에 대해 선호도를 입력한 고객들의 정보를 사용한다. 그러나 고객들간의 유사도가 전혀 고려되지 않기 때문에 만약 특정 고객과 전혀 선호도가 비슷하지 않은 사용자들의 평가를 기반으로 한다면, 상품들간의 유사도가 정확하지 않고 아울러 추천 시스템의 예측 능력과 추천 능력이 저하되는 문제점이 있다.
본 논문에서는 기존의 아이템 기반 협동적 필터링 기술의 문제점을 보완하고 추천 시스템의 예측 능력을 향상시키기 위하여 유사한 선호도를 가지는 고객들의 평가에 근거하여 상품들간의 유사도를 구하여 특정 상품에 대한 고객의 선호도를 예측하여 추천해 주는 기법을 제안한다. 본 논문에서 제안한 방법의 성능을 기존의 여러 다른 협동적 필터링 방법들과의 비교실험을 통해 평가하였다. 실험 결과 본 논문에서 제안한 방법이 기존의 다른 방법들보다 우수함을 확인할 수 있었다.

목차

요약

Abstract

1. 서론

2. 관련연구

3. 사용자 기반과 아이템 기반 협동적 필터링의 결합

4. 실험 환경

5. 실험 결과 및 분석

6. 결론 및 향후 연구

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017863308