메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
말뭉치를 이용하여 통계적으로 의미역 결정(semantic role labeling)을 하기 위해서는, 의미역을 태깅하는 작업이 필수적이다. 그러나 한국어의 경우 의미역이 태깅된 대량의 말뭉치를 구하기 힘들며, 이를 직접 구축하기 위해서는 많은 시간과 노력이 필요한 문제점이 있다. 본 논문에서는 비지도 학습의 하나인 self-training 알고리즘을 적용하여, 의미역이 태깅되지 않은 말뭉치로부터 의미역을 결정하는 방법을 제안한다. 이를 위해, 세종 용언 전자사전의 격틀정보를 이용하여 자동으로 학습 말뭉치를 구축하였으며, 확률 모델을 적용하여 점진적으로 학습하였다. 그 결과, 4개의 부사격 조사에 대해 평균적으로 83.00%의 정확률을 보였다.

목차

요약
Abstract
1. 서론
2. 기존연구
3. 의미역 결정 시스템 구조
4. 서술어 - 논항 관계 추출기
5. 격틀사전을 이용한 의미역 결정
6. 확률 모델을 이용한 의미역 결정
7. 비지도 학습을 기반으로 한 의미역 결정
8. 실험 및 평가
9. 결론
참고문헌

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016526362