메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이석준 (경북대학교) 정순기 (경북대학교)
저널정보
한국HCI학회 한국HCI학회 학술대회 HCI 2008
발행연도
2008.2
수록면
795 - 800 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
카메라로 입력되는 영상에서 객체를 인식하기 위한 노력은, 기존의 컴퓨터 비전분야에서 좋은 이슈로 연구되고 있다. 영상 내부에 등장하는 객체를 인식하고 해당 객체를 포함하고 있는 전체 이미지에서 현재 영상의 위치를 인식하기 위해서는, 영상 내에 등장할 객체에 대한 트레이닝이 필요하다. 본 논문에서는 영상에 등장할 객체에 대해서, 특징 점을 검출(feature detection)하고, 각 점들이 가지는 픽셀 그라디언트 방향의 벡터 값들을 그 이웃하는 벡터 값들과 함께 DoG(difference-of-Gaussian)함수를 이용하여 정형화 한다. 이는 추후에 입력되는 영상에서 검출되는 특징 점들과 그 이웃들 간의 거리나 스케일의 비율 등의 파라미터를 이용하여 비교함으로써, 현재 특징 점들의 위치를 추정하는 정보로 사용된다. 본 논문에서는 광역의 시설 단지를 촬영한 인공위성 영상을 활용하여 시설물 내부에 존재는 건물들에 대한 초기 특징 점들을 검출하고 데이터베이스로 저장한다. 트레이닝이 마친 후에는, 프린트된 인공위성 영상내부의 특정 건물을 카메라를 이용하여 촬영하고, 이 때 입력된 영상의 특징 점을 해석하여 기존에 구축된 데이터베이스 내의 특징 점과 비교하는 과정을 거친다. 매칭 되는 특징 점들은 DoG로 정형화된 벡터 값들을 이용하여 해당 건물에 대한 위치를 추정하고,3차원으로 기 모델링 된 건물을 증강현실 기법을 이용하여 영상에 정합한 후 가시화 한다.

목차

요약
1. 서론
2. 관련연구
3. 특징 점 추출과 객체인식
4. 구현 및 실험결과
5. 결론 및 의의
감사의 글
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0