메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이석원 (고려대학교) 명노해 (고려대학교)
저널정보
대한산업공학회 산업공학 (IE interfaces) 산업공학 (IE interfaces) 제22권 제1호
발행연도
2009.3
수록면
17 - 25 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In mobile device’s user interface, menu organization is very important as well as menu structure because small display of mobile device. Menu items should be organized based on user knowledge structure to design user-centered interface. Traditionally, MDS (Multidimensional Scaling) have been most often used to expose users’ perceived organization of menu items. But, information that MDS reveals is just relative spatial location of concepts and not relevant to concepts connection. Unlike MDS, Trajectory Mapping explicitly finds users’ cognitive links between perceived concepts. This study proposes a Trajectory Mapping technique for eliciting knowledge structure, especially a set of cognitive pathways linking menu items, from end user. With twelve participants, MDS and Trajectory Mapping were conducted using cellular phone’s menu items. And user knowledge structure was analyzed through Visual Concept Map that combination of results of MDS and Trajectory Mapping. After then, menu items were organized according to users’ perceived organization. Empirical usability test was also conducted. The results of usability test showed that usability, in terms of task performance time, number of errors, and satisfaction, for newly organized interface was significantly improved compare to original interface. The methodology of this study is expected to be applicable to design a user-centered interface. In other words, Trajectory Mapping technique can be used as a design tool of user interface for imposing user knowledge structure on the interface.

목차

1. 서론
2. 연구 방법
3. 연구 결과
4. 실증적 평가(Empirical Evaluation)
5. 토의
6. 결론
참고문헌

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-530-003630219