메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jeong-Eun Lee (Waseda University) Mitsuo Gen (Waseda University) Kyong-Gu Rhee (Dongeui University, Korea)
저널정보
대한산업공학회 대한산업공학회 춘계공동학술대회 논문집 2009년 대한산업공학회 춘계공동학술대회 논문집
발행연도
2009.5
수록면
533 - 540 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, Reverse Logistics, which is the logistics activity covering over the productivity recovery, recycling, waste disposal and etc., has received considerable attention due to following two reasons. First, the seriousness of environmental problem has been embossed in corporate logistics activity and the environmental logistics problem has been internationally issued by Government Resolutions and etc. Second, the resources have been exhausted all over the world.
Most bottles for the liquors are reusable until about 10 times for recycling the resource. Therefore, a used bottle collection scheme without depending on the purchase of new bottles is one of the important reverse logistics network models.
In this study, we consider an efficiency collection of empty bottles in a reuse system as a Reverse Logistics Network (RLN) Model. We study a case study based on data from liquors company called ABC Distilling Co., Ltd. in Busan, Korea.
For demonstrating the effectiveness of proposed method, we will show that cut down the recovery transportation cost by rearranging Reverse Logistics (RL) plan of ABC Distilling Co., Ltd. A key point of this paper or even a key point of dealing with any practical cases is to find out the inefficient factors of operations and quantify it.
In the experimental results, 6.3% of the yearly total cost was saved and 2,215km of the daily total transportation distance was decreased.

목차

Abstract
1. Introduction
2. Illustration of Case Study
3. GA Approach Design
4. Results and Discussions
5. Conclusion
Acknowledgments
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-530-003179522