메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Aekyung Kim (경희대학교) Jae-Yoon Jung (경희대학교)
저널정보
대한산업공학회 대한산업공학회 추계학술대회 논문집 2012년 대한산업공학회 추계학술대회 논문집
발행연도
2012.11
수록면
916 - 928 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper demonstrates that the process model discovered from historical event log can be extended to predict business performance and recommend performers of running instances. For the performance prediction and the performer recommendation, we adopt decision tree, which is a decision support tool in management science. Decision trees are commonly used to help identify alternative most likely to reach a goal. The proposed approach is aimed at supporting managers in performer decision-making processes, based on historical data such as completion time and cost according to the performers. To provide effective performer recommendation, we use several filtering
with performers to the decision tree, which allows for a suitable recommendation according to characteristics processes. The proposed technique is evaluated through an experiment using real-life event log in telecom service industry. The main contribution of this paper is to provide a real-time decision support tool by recommending the best performer for a target performance indicator during process execution based on historical data.

목차

1. Introduction
2. Related Work
3. Performer Recommendation Using Process Mining
4. Decision Tree Construction for Performance Prediction
5. Decision Tree Matching with Running Case
6. Example Scenario
7. Conclusion and Future Work
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-530-000999624