메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Asami Ishizaka (Tokyo University of Science) Masuhiro Nitta (Tokyo University of Science) Kiyotaka Kato (Tokyo University of Science)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2010
발행연도
2010.10
수록면
255 - 260 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Frequency estimation is a useful technology for analyzing oscillatory phenomena. In these days, there is a demand for rapid and highly accurate frequency estimator. Though various frequency estimation methods have been proposed, most of them can not respond to the demand. An algebraic approach is succeeded in achieving the demand but it requires a lot of multiple integrations due to eliminating differential operations. The present paper proposes a frequency estimator of a sinusoidal signal based on the notion of distribution theory. Then the estimator is realized by single integrations. The proposed method relaxes the complexity of multiple integrations into single integrations but the integration is theoretically evaluated over the infinite interval (-∞,∞). The paper firstly reduces the infinite interval to a finite observation interval [0,T] and secondly approximates the integration by a numerical integration. The authors introduce Gaussian function as a test function and perform an error analysis to ensure the accuracy of the frequency estimator. As a result of the error analysis, the suitable conditions of the Gaussian function are clarified. Under the derived conditions, the authors confirmed that the proposed frequency estimator brings out enough the estimation performance.


목차

Abstract
1. INTRODUCTION
2. FREQUENCY ESTIMATOR
3. ERROR ANALYSIS
4. NUMERICAL SIMULATIONS
5. EXPERIMENTS
6. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000937038