메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2010
발행연도
2010.10
수록면
2,537 - 2,540 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper concerns with the autonomous flight control system of an unmanned helicopter, which is combined with reinforcement learning based neuro-controller. We assume that PID (proportional-integral-derivative) type, linear feedback controller is predesigned and it can stabilize the system with limited performance. The conservative control behavior is improved by the synthesis of the poor feedback controller and the neuro-controller. Actor-critic learning architecture is adopted as a learning agent. Actor network consists of feed-forward neural network and critic network is approximated with a tabular function approximator. The Q-value based critic network is trained via SARSA algorithm which is a variant of reinforcement learning. Several demonstrations are performed with a simple first-order system. Furthermore, the proposed neuro-control system is applied to an unmanned helicopter known as a highly nonlinear and complex system and the simulation results are presented.

목차

Abstract
1. INTRODUCTION
2. FEEDBACK CONTROL SYSTEM
3. ACTOR/CRITIC LEARNING WITH FEEDBACK CONTROL SYSTEM
4. APPLICATION TO AN UNMANNED HELICOPTER
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000931930