메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Eloy Gonzales (Waseda University) Shingo Mabu (Waseda University) Karla Taboada (Waseda University) Kaoru Shimada (Waseda University) Kotaro Hirasawa (Waseda University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
3,850 - 3,856 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Association rule mining is one of the tasks of datamining and it has been extensively studied recently. As a consequence, several methods for extractin gas sociation rules have been developed during the last years. Most of the muse the supportand confidence framework to extract the association rules. Researches are able to extract strong rules using this framework. However these measures are not good enough to solve the quality problems of the rules. A new data mining method using Genetic Network Programming(GNP) has also been developed recently which uses the χ<SUP>2</SUP> (chi-squared) as a correlation measure and its effectiveness has been shown for different data sets[1][2]. To enhance the correlation degree and comprehensibility of association rule, several correlation measures including lift, χ<SUP>2</SUP>, all-confidence and cosineare studied in this paper when they are in corporated in the conventional GNP based mining algorithm. A comparison between the correlation measures is made in the simulations when they are incorporated separately in to the GNP based mining method. Finally, the association rules extracted using different correlation measures are applied to the classification problems and the prediction accuracies of them are evaluated.

목차

Abstract
1.INTRODUCTION
2.ASSOCIATION RULES
3.INTERESTINGNESS OF ASSOCIATION RULES
4.CORRELATION MEASURES
5.GENETIC NETWORK PROGRAMMING
6.METHODOLOGY
7.SIMULATION RESULTS
8.CONCLUSIONS AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000759449