메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jong Gwan Lim (KAIST) Sang-Youn Kim (Korea University of Technology and Education) Dong-Soo Kwon (KAIST)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
5,331 - 5,335 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Due to temporal and spectral difference between speech and acceleration signal, the conventional End Point Detection (EPD) in automatic speech recognition cannot be directly applied to acceleration and threshold?based algorithms found in literatures are too heuristic to be accepted for automatic EPD. In this regard, for motion detection byacceleration, supervised learning in pattern recognition is proposed to discriminate a motion state and a non-motion statesimply. In succession of the previous research where we’ve concentrated on the feasibility test of the proposed approachand feature selection in general pattern recognition procedure, a new recognizer, Radial Basis Function network (RBF), is subsequently designed for the performance comparison with Multi-Layer Perceptron (MLP) which serves as a performance baseline. As a result, it is reported that the recognition rates variance between feature vectors is not significant in RBF while it is significant in MLP. In addition, recognition rates variance between subjects shows cleardifference statistically in the both ways but more serious in RBF. Finally it is concluded that MLP and RBF don’t make significant recognition rates difference and confirmed again that the sequence of the absolute 1st derivatives record comparatively more reliable and stable recognition performance.

목차

Abstract
1. INTRODUCTION
2. PREVIOUS RESEARCH
3. PROPOSED METHOD
4. EXPERIMENT AND RESULT
5. DISCUSSION AND FURTHERWORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000762286