메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
문연주 (광운대학교 전자통신공학과) 전선도 (광운대학교 전자통신공학과) 강철호 (광운대학교 전자통신공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제18권 제8호
발행연도
1999.1
수록면
94 - 99 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
성 인식 알고리즘에서 높은 인식률을 보이는 방법은 hidden Markov mode1(HMM)과 신경망의 혼합 형태이다. 이것은 통계적인 모델과 신경망 모델의 장점을 혼용하는 방법이다. 본 연구에서 제안하는 인식 알고리듬은 반연속 HMM과 radial basis function(RBF)의 새로운 형태의 혼합 구조로써 반연속 HMM 파라미터 중에서 관측 확률을 결정하는 가중치(혼합확률밀도함수계수)확률을 Baum-Welch 추정 이후 RBF로로써 재 추정하는 인식 모델을 제안한다. 제안한 방법은 RBF의 은닉층(hidden layer)의 기본 함수(basis function)와 반연속 HMM의 확률 밀도 함수의 유사함을 고려한 것으로 RBF의 학습 및 추정된 가중치로써 보다 음성 파형을 분별력 있게 구분하고자 하는 것이다. 모의 실험 결과는 반연속 HM만을 사용 할 때 보다 제안한 반연속 HMM/RBF 혼합 구조가 비 학습 화자에 대한 인식률을 개선함으로써 단순히 반연속 HMM만을 사용하는 것 보다 훨씬 분별력이 높은 방법임을 보여준다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0