메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
허경용 (University of Florida) 우영운 (동의대학교) 김성훈 (경북대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제14권 제5호
발행연도
2010.5
수록면
1,093 - 1,102 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
주성분 분석(PCA)은 데이터의 차원을 줄이면서 최대의 데이터 변이를 보존하는 기법으로 차원 축소나 피처 추출을 위해 널리 사용되고 있다. 하지만 PCA는 잡음에 민감한 단점이 있으며, 이러한 잡음 민감성을 해결하기 위해 여러 가지 PCA 변형이 제안되었다. 그 중 robust fuzzy PCA(RF-PCA)는 퍼지 소속도를 사용하여 잡음의 영향을 효과적으로 줄일 수 있음이 입증되었다. 하지만 RF-PCA 역시 몇 가지 문제점이 있고, 수렴성이 그 중 하나이다. RF-PCA는 소속도와 주성분을 갱신할 때 서로 다른 목적 함수를 사용하므로 수렴 속도가 느리고 구해지는 해가 국부 최적해임을 보장하지 않는다. 이 논문에서는 RF-PCA의 문제점을 해결하기 위해 하나의 목적 함수를 이용해 소속도와 주성분을 갱신할 수 있는 방법을 제안한다. 제안한 방법, RF-PCA2는 반복 최적화를 이용함으로써 국부 최적해에 수렴함을 보장하며, RF-PCA에 비해 빠른 수렴 속도를 가지고, 잡음 민감성이 줄어든다. 이러한 사실들은 실험 결과를 통해 확인할 수 있다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 향상된 Robust Fuzzy PCA
Ⅲ. 실험 결과 및 고찰
Ⅴ. 결론
참고문헌

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0