메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오성권 (수원대학교) 오승훈 (수원대학교) 김현기 (수원대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제23권 제6호
발행연도
2013.12
수록면
539 - 544 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 다항식 기반 RBFNNs를 이용하여 3차원 얼굴인식 알고리즘을 설계하고 인식률을 산출하는 방법을 제시한다. 2차원 얼굴인식의 경우 얼굴 포즈, 조명 등과 같은 외부 환경에 의해 인식률이 저하된다. 이러한 단점을 보완하기 위해 3차원 영상을 획득하여 얼굴인식을 수행한다. 얼굴인식을 수행하기 전에 3D스캐너를 통해 얻은 얼굴영상의 포즈 보상을 실시하고 얼굴의 형상을 정면으로 향하게 한다. 그리고 Point Signature 기법을 이용하여 얼굴의 깊이 값을 추출하게 된다. 추출된 데이터는 고차원 데이터로서 학습 및 인식을 수행함에 있어 문제가 생길 수 있기 때문에 PCA알고리즘을 수행하여 차원을 축소한 데이터를 사용한다. 효율적인 학습을 위해 최적화 알고리즘을 통해 파라미터 최적화를 수행하며 PSO, DE, GA 알고리즘을 사용하여 인식 성능을 확인한다.

목차

요약
Abstract
1. 서론
2. 3차원 얼굴 형상 취득 및 전처리
3. 제안된 PRBFNNs 구조 및 최적화
4. 시뮬레이션 및 결과
5. 결론 및 향후과제
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0