메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박화범 (광운대학교) 조영성 (동양대학교) 고형화 (광운대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제14권 제4호
발행연도
2013.12
수록면
419 - 428 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
유비쿼터스 컴퓨팅 환경의 전자상거래에서 실시간성과 추천의 정확도를 높이는 연구가 활발히 진행되고 있다. 대부분의 기존 추천기법들은 프로파일 방식의 문제로 고객의 관심도나 고객성향을 분석하기에는 많은 어려움과 비용의 문제가 있으며 고객은 여전히 만족하지 못하고 있다. 이는 구성되어있는 데이터베이스들의 문제가 아니라 기존 자료를 분석하기 위한 평가 자료인 신규로 프로파일을 생성하거나 다양한 프로파일을 생성하는데 문제가 있다. 또한 기존 추천기법에서는 다양한 특성을 가진 각 사용자 계층별로 차별화된 개인화 추천이 어렵다. 따라서 이 논문에서 기존의 평가 자료방식과 다르게 구매로 인해 발생되어진 자료를 기반으로 사용자에게 번거로운 질의 응답 과정이 없이 묵시적인 방법을 이용하였다. 다양한 개인화 성향과 정확한 고객성향의 내용 분석이 가능한 FRAT 기법을 적용하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 마이닝과 FRAT기반 가중치선호도 군집을 이용한 추천 기법
4. 실험 및 성능 평가
5. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-001315175