메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Young-Sung Cho (Dongyang Mirae Univ.) Song-Chul Moon (Namseoul Univ.) Yeon S. Ahn (Gacheon Univ.)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제15권 제6호
발행연도
2014.12
수록면
711 - 719 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
유비쿼터스 컴퓨팅 환경하에서 전자상거래 대규모가 대형화되고 취급되는 항목제품들도 다종 다양해지고 있는 것이 현실이다. 이러한 유비쿼터스 상거래 시스템은 편리하고 신속하게 제공되어야 하고 다이나믹한 환경에서 실시간성과 민첩성이 요구되고 있다. 데이터마이닝에서 추출한 지식을 적극적으로 활용하는 기법들이 전자상거래에서 구매 촉진을 증진시키는 마케팅 전략으로 활용되고 있다. 본 연구에서는 유비쿼터스 컴퓨팅 환경 하에 지능형 모바일 단말기를 이용한 추천을 위한 가중치기반 순차패턴탐사를 이용한 추천서비스f를 제안하였다. 본 연구에서는 추천의 정확성을 향상시키고 구매력이 높은 항목제품 및 서비스를 추천하기 위해서 FRAT 세분화 기법을 이용한 가중치기반 순차패턴 탐사를 이용한 추천서비스를 제안하였다. 성능평가를 위해 현업에서 사용하는 인터넷 화장품 쇼핑몰의 데이터를 기반으로 데이터 셋을 구성하여 기존의 방법과 비교 실험을 통해 성능을 평가하여 효용성과 타당성을 입증하였다. 유비쿼터스 상거래에서 시간과 장소에 제약을 받지 않는 모바일 웹앱을 이용한 추천서비스를 위해서 이전방법보다 개선된 방법으로 추천서비스을 구현하였다.

목차

요약
Abstract
1. Introduction
2. Related Research
3. Weighted-oriented sequence pattern mining for recommendation
4. Experiment and Performance Evaluation
5. Conclusion and henceforth task
Reference

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-566-001393399