메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍소라 (성균관대학교) 정연오 (성균관대학교) 이지형 (성균관대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제24권 제5호
발행연도
2014.10
수록면
482 - 488 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
대표적인 소셜 네트워크 서비스(SNS)인 트위터의 내용을 분석하여 자동으로 트윗에 나타난 사용자의 감성을 분석하고자 한다. 기계학습 기법을 사용해서 감성 분석 모델을 생성하기 위해서는 각각의 트윗에 긍정 또는 부정을 나타내는 감성 레이블이 필요하다. 그러나 사람이 모든 트윗에 감성 레이블을 붙이는 것은 비용이 많이 소요되고, 실질적으로 불가능하다. 그래서 본 연구에서는 “감성 레이블이 있는 데이터”와 함께 “감성 레이블이 없는 데이터”도 활용하기 위해서 반감독 학습기법인 self=training 알고리즘을 적용하여 감성분석 모델을 생성한다. Self-training 알고리즘은 “레이블이 있는 데이터”의 레이블이 있는 데이터를 활용하여 “레이블이 없는 데이터”의 레이블을 확정하여 “레이블이 있는 데이터”를 확장하는 방식으로, 분류모델을 점진적으로 개선시키는 방식이다. 그러나 데이터의 레이블이 한번 확정되면 향후 학습에서 계속 사용되므로, 초기의 오류가 계속적으로 학습에 영향을 미치게 된다. 그러므로 조금 더 신중하게 “레이블이 없는 데이터”의 레이블을 결정할 필요가 있다. 본 논문에서는 self-training 알고리즘을 이용하여 보다 높은 정확도의 감성 분석 모델을 생성하기 위하여, self-training 중 “감성 레이블이 없는 데이터”의 레이블을 결정하여 “감성 레이블이 있는 데이터”로 확장하기 위한 3가지 정책을 제시하고, 각각의 성능을 비교 분석한다. 첫 번째 정책은 임계치를 고려하는 것이다. 분류 경계로부터 일정거리 이상 떨어져 있는 데이터를 선택하고자 하는 것이다. 두 번째 정책은 같은 개수의 긍/부정 데이터를 추가하는 것이다. 한쪽 감성에 해당하는 데이터에만 국한된 학습을 하는 것을 방지하기 위한 것이다. 세 번째 정책은 최대 개수를 고려하는 것이다. 한 번에 많은 양의 데이터가 “감성 레이블이 있는 데이터”에 추가되는 것을 방지하고 상위 몇%만 선택하기 위해서, 선택되는 데이터의 개수의 상한선을 정한 것이다. 실험은 긍정과 부정으로 분류되어 있는 트위터 데이터 셋인 Stanford data set에 적용하여 실험하였다. 그 결과 학습된 모델은 “감성 레이블이 있는 데이터” 만을 가지고 모델을 생성한 것보다 감성분석의 성능을 향상 시킬 수 있었고 3가지 정책을 적용한 방법의 효과를 입증하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 배경 지식
4. 제안 기법
5. 실험
6. 결론
References

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0