메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장경애 (서울과학기술대학교) 박상현 (연세대학교) 김우제 (서울과학기술대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.42 No.4
발행연도
2015.4
수록면
512 - 521 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
네티즌은 인터넷을 통해서 상품을 구매하고 상품에 대한 감정을 긍정 혹은 부정으로 상품평에 표현한다. 상품평에 대한 분석은 잠재적 소비자뿐만 아니라 기업의 의사결정에 중요한 자료가 된다. 따라서 인터넷의 대량 리뷰에서 의미 있는 정보를 분석하여 의견을 도출하는 오피니언 마이닝 기술의 중요성이 증대되고 있다. 기존의 연구는 대부분이 영어를 기반으로 진행되었고 아직 한글에 대한 상품평 분석은 활발히 이루어 지지 않고 있다. 또한 한글은 영어와 달라 꾸미는 말과 어미가 복잡한 특성을 갖고 있다. 그리고 기존의 연구는 통계적 기법, 사전 기법, 기계학습 기법 등을 사용하여 연구되었으나 인터넷 언어의 특성을 감안하지는 못하였다. 본 연구에서는 감정이 포함된 인터넷 언어의 특성을 분석하여 감정분석의 정확률을 높이는 감정분류 방법을 제안한다. 이를 통해 데이터에 독립적인 인터넷 감정기호를 이용해서 자동으로 긍정 및 부정 상품평을 분류할 수 있었고 높은 정확률, 재현율, Coverage 결과를 통해서 제안 알고리즘의 유효성을 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 이론적 배경과 선행연구의 고찰
3. 연구설계
4. 실험결과
5. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0