메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이용후 (명지대학교) 김상운 (명지대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제51권 10호
발행연도
2014.10
수록면
109 - 117 (9page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
내비게이션 경로탐색 시스템에서 A* 알고리즘을 사용할 경우 경로거리가 멀수록 Open 리스트(최적의 경로를 선택하기 위해 탐색된 예비경로들의 집합)의 크기가 증가하며, 이로 인해 비교연산이 증가하게 된다. 본 논문에서는 Dijkstra의 알고리즘과 A* 알고리즘을 주기적으로 교체 적용하여 Open 리스트의 크기를 줄일 수 있는 검색 방법을 제안한다. 여기서 두 알고리즘을 교체 적용하기 위하여 Level이라는 이름의 파라미터를 사용한다. 미리 정해진 레벨(깊이)만큼 Dijkstra의 알고리즘으로 탐색한 다음 A* 알고리즘으로 교체되도록 한다. 이 때 Dijkstra 알고리즘의 Open 리스트에 있는 노드들을 A* 알고리즘의 평가함수로 적합도를 평가하여 가능성이 있는 노드만을 A* 알고리즘의 Open 리스트로 전달한다. 따라서 계속되는 검색과정에서 Open 리스트의 크기가 불필요하게 증가되는 것을 억제할 수 있다. 또한 Dijkstra와 A* 알고리즘을 번갈아 적용하기 때문에 A* 알고리즘으로는 찾지 못할 최적 또는 준 최적 경로를 Dijkstra의 알고리즘으로 탐색한 결과와 비슷한 수준으로 찾을 수 있게 된다. 제안한 하이브리드 검색 알고리즘을 인공 및 실제의 지도 데이터를 이용하며 실험한 결과, 기존의 탐색 알고리즘과 비슷한 수준의 최단경로거리를 유지하면서 비교연산의 수를 더 줄일 수 있었다. 이 실험에서는 Level 값은 임의로 선정하였다. 따라서 실제의 도로 상황에서 최적 Level 값을 자동 선정하는 연구는 앞으로의 과제이다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 하이브리드 경로탐색 알고리즘
Ⅳ. 컴퓨터 시뮬레이션
Ⅳ. 결론
REFERENCES

참고문헌 (13)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-002808757