메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mohammad Moonesun (National University of Shipbuilding Admiral Makarov (NUOS)) Korol Yuri Mikhailovich (National University of Shipbuilding Admiral Makarov (NUOS)) Davood Tahvildarzade (Marine Research Centre (MRS)) Mehran Javadi (Isfahan University of Technology (IUT))
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제38권 제10호
발행연도
2014.12
수록면
1,217 - 1,224 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper provides a practical scaling method to solve an old problem for scaling and developing the speed and resistance of a model to full-scale submarine in fully submerged underwater test. In every experimental test in towing tank, water tunnel and wind tunnel, in the first step, the speed of a model should be scaled to the full-scale vessel (ship or submarine). In the second step, the obtained resistance of the model should be developed. For submarine, there are two modes of movement: surface and submerged mode. There is no matter in surface mode because, according to Froude"s law, the ratio of speed of the model to the full-scale vessel is proportional to the square root of lengths (length of the model on the length of the vessel). This leads to a reasonable speed and is not so much for the model that is applicable in the laboratory. The main problem is in submerged mode (fully submerged) that there isn"t surface wave effect and therefore, Froude"s law couldn"t be used. Reynold"s similarity is actually impossible to implement because it leads to very high speeds of the model that is impossible in a laboratory and inside the water. According to Reynold"s similarity, the ratio of speed of the model to the full-scale vessel is proportional to the ratio of the full-scale length to the model length that leads to a too high speed. This paper proves that there is no need for exact Reynold"s similarity because after a special Reynolds, resistance coefficient remains constant. Therefore, there is not compulsion for high speeds of the model. For proving this finding, three groups of results are presented: two cases are based on CFD method, and one case is based on the model test in towing tank. All these three results are presented for three different shapes that can show; this finding is independent of the shapes and geometries. For CFD method, Flow Vision software has been used.

목차

Abstract
1. Introduction
2. Case 1: CFD analysis for a submarine
3. Case 2: CFD analysis for a torpedo
4. Case 3: model tests in towing tank
5. Analysis and Conclusion
References

참고문헌 (31)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0