메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이충희 (한국전자통신연구원) 서영훈 (충북대학교) 김현기 (한국전자통신연구원)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.42 No.3
발행연도
2015.3
수록면
367 - 378 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 기계학습 방법과 필터링 방법을 결합해서 경쟁관계를 인식하는 방법에 대한 연구이다. 기존 연구들은 기계학습 방법에만 의존해서 관계유형을 인식하는 연구들이 대부분이며. 사용되는 자질도 일반적인 관계유형에 적합한 자질을 사용하고 특히 구문분석 정보가 매우 중요한 자질로 사용된다. 본 논문에서는 구문분석 등의 언어분석 결과를 이용하지 않고, 단순한 자질들(어휘, 거리, 위치, 단서단어)만을 사용해도 경쟁관계 인식에 효과적임을 확인하였다. 또한, 경쟁관계인식 긍정 정확도를 향상시킬 수 있는 문장별 경쟁유무 분류방법, 스팸분류 방법, 거리제약 기반 자질필터링 방법을 기계학습 방법과 결합한 방법론을 제안한다. 방법론 검증을 위해서 뉴스분야 2,565개 문장을 평가셋으로 구축하였고, 비교 평가를 위해서 규칙기반 경쟁관계 인식기와 기존연구의 관계추출 방법론에 기반한 일반 관계추출기를 적용해서 비교하였다. 성능평가 결과로 규칙기반 엔진이 긍정정확도와 전체정확도(accuracy)가 81.2%와 56.8% 성능을 보였고, 일반 관계추출기는 61.2%와 56.3%를 보였다. 그에 비해서 본 논문에서 제안하는 방법은 긍정 정확도 92.2%와 전체정확도 71.3% 성능을 보여서 경쟁관계 인식에 효과적임을 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 기계학습 및 필터링 기반 경쟁관계 인식
4. 실험 및 결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0