메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오승훈 (수원대학교) 오성권 (수원대학교) 김진율 (수원대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제64권 제5호
발행연도
2015.5
수록면
766 - 778 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (7)

초록· 키워드

오류제보하기
In this paper, we design a hybrid system for recognition and tracking realized with the aid of polynomial based RBFNNs pattern classifier and particle filter. The RBFNN classifier is built by learning the training data for diverse pose images. The optimized parameters of RBFNN classifier are obtained by Particle Swarm Optimization(PSO). Testing data for pose image is used as a face image obtained under real situation, where the face image is detected by AdaBoost algorithm. In order to improve the recognition performance for a detected image, pose estimation as preprocessing step is carried out before the face recognition step. PCA is used for pose estimation, the pose of detected image is assigned for the built pose by considering the featured difference between the previously built pose image and the newly detected image. The recognition of detected image is performed through polynomial based RBFNN pattern classifier, and if the detected image is equal to target for tracking, the target will be traced by particle filter in real time. Moreover, when tracking is failed by PF, Adaboost algorithm detects facial area again, and the procedures of both the pose estimation and the image recognition are repeated as mentioned above. Finally, experimental results are compared and analyzed by using Honda/UCSD data known as benchmark DB.

목차

Abstract
1. 서론
2. 데이터베이스 구축 및 포즈별 학습 수행
3. 테스트 이미지 검출 및 인식 기반 객체 추적
4. 실험 및 결과고찰
5. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-560-001412695