메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조익성 (경운대학교) 정종혁 (경운대학교) 권혁숭 (부산대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제19권 제7호
발행연도
2015.7
수록면
1,728 - 1,736 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
부정맥 분류를 위한 기존 연구들은 개인별 ECG신호의 차이는 고려하지 않고 특정 ECG 데이터에 종속적으로 개발되었기 때문에 다른 환경에 적용할 경우 그 성능에 변화가 많아 임상 적용에 한계가 있다. 또한 기존의 방법들은 각 ECG 특징점의 정확한 측정을 필요로 하며, 연산이 매우 복잡하다. 복잡도를 줄이기 위한 여러 가지 방법들이 제안되었지만, 그에 따른 분류의 정확도가 떨어지는 문제점이 있었다. 따라서 이러한 문제점을 극복하기 위해서는 개인별 다양한 ECG 신호의 패턴에 따라 최소한의 특징점을 추출함으로써 연산의 복잡도를 줄이고 부정맥을 정확하게 분류할 수 있는 방법이 필요하다. 본 연구에서는 대상 유형별 ECG 신호의 QRS 패턴을 이용한 부정맥 분류 방법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 R파를 검출하고 QRS 특징점을 통해 대상 유형별 ECG 신호의 QRS 패턴을 정의하였다. 이후 패턴분류에 따른 오류를 검출 및 수정하고, 중복된 QRS 패턴을 별도의 부정맥으로 분류하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 43개의 레코드를 대상으로 PVC, PAC, Normal, LBBB, RBBB, Paced beat의 검출율을 비교하였다. 실험결과 Normal, PVC, PAC, LBBB, RBBB, Paced beat의 검출율은 각각 99.98, 97.22 95.14, 91.47, 94.85, 97.48%의 우수한 검출율을 나타내었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 제안한 기법
Ⅲ. 분류 성능 개선
Ⅳ. 실험결과 및 고찰
Ⅴ. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-559-001713014