메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임미영 (대구대학교) 강신재 (대구대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제25권 제4호
발행연도
2015.8
수록면
386 - 391 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 한국어와 중국어의 언어학적인 특징을 고려하여 문서 자동분류 시스템의 성능을 높일 수 있는 최적의 자질어 단위를 제안한다. 언어 종속적 단위인 형태소 자질어와 언어 독립적 단위인 n-gram 자질어 그리고 이들을 조합한 복합 자질어 집합을 대상으로 각 언어의 인터넷 신문기사를 SVM으로 분류하는 실험을 수행하였다. 실험 결과, 한국어 문서분류에서는 bi-gram이 F1-measure 87.07%로 가장 좋은 분류 성능을 보였고, 중국어 문서분류에서는 ‘uni-gram?명사 · 동사 · 형용사 · 사자성어’의 복합 자질어 집합이 F1-measure 82.79%로 가장 좋은 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 문서 분류 방법
4. 실험 결과 및 분석
5. 결론 및 향후 연구
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-028-001770180