메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
송영관 (한양대학교) 구본열 (한양대학교) 김재정 (한양대학교)
저널정보
(사)한국CDE학회 한국CDE학회 학술발표회 논문집 한국CADCAM학회 2015 하계학술대회 논문집
발행연도
2015.8
수록면
306 - 311 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, a new concept torque converter (TC) is required to be smaller than before while improving the efficiency in power transmission, in order to reduce the vehicle weight and improve the fuel economy. However, consumptive redesigns and design changes have to be repeated to find the optimum design of TC with satisfying the required space and performance. In addition, a lot of time and cost are required in the testing processes and analyses for TC performance evaluation. This paper proposes a method for supporting TC design satisfying the requirements using a concept of optimal shape design. This approach is accomplished through correlation analyses between the TC performance and the TC shapes. As a method of optimization, we adapted design optimization based on approximate model. To make approximate model, OA(Orthogonal array) was used as DOE(Design of Experiments). The PR(polynomial regression) method was selected as an approximate model. To find optimum value of the PR, STDQAO(Sequential Two-point Diagonal Quadratic Approximate Optimization) was used as an optimization algorithm. The proposed method has two objectives: (1) the TC hydrodynamic performance is predicted with a few geometric parameters in the conceptual design phase; (2) the optimum TC shape that meets the requirements is achieved. As a result, it is expected to contribute to reduce product design cost and time, which were required due to repetitive design changes and performance evaluation. Then, an inexperienced designer would become capable of efficient TC design.

목차

ABSTRACT
1. 서론
2. 최적 설계 문제 정식화
3. 최적 설계 진행 절차
4. 최적 설계 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-580-001841489