메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이용규 (연세대학교) 이일병 (연세대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제25권 제5호
발행연도
2015.10
수록면
425 - 430 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문은 딥러닝 알고리즘을 적용한 깊은신경망을 이용하여 회전 객체의 분류 효율성을 높이기 위한 연구이다. 회전객체의 분류 실험을 위하여 데이터는 COIL-20을 사용하며 객체의 2/3영역을 학습시키고 1/3영역을 유추하여 분류한다. 연구에 이용된 3가지 분류기는 주성분 분석법을 이용해 데이터의 차원을 축소하면서 특징값을 추출하고 유클리디안 거리를 이용하여 분류하는 PCA분류기와 오류역전파 알고리즘을 이용하여 오류 에너지를 줄여가는 방식의 MLP분류기, 마지막으로 pre-training을 통하여 학습데이터의 관찰될 확률을 높여주고 fine-tuning으로 오류에너지를 줄여가는 방식의 딥러닝을 적용한 DBN분류기이다. 깊은신경망의 구조별 오류율을 확인하기 위하여 은닉층의 개수와 은닉뉴런의 개수를 변경해가며 실험하고 실제로 가장 낮은 오류율을 나타내는 구조를 기술한다. 가장 낮은 오류율을 보였던 분류기는 DBN을 이용한 분류기이다. 은닉층을 2개 갖는 깊은신경망의 구조로 매개 변수들을 인식에 도움이 되는 곳으로 이동 시켜 높은 인식률을 보여줬다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 시스템 설계
4. 실험 및 비교분석
5. 결론 및 향후 연구
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-028-001950864