메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제19권 제6호
발행연도
2014.6
수록면
19 - 26 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
앙상블 분류기는 여러 개의 분류기에서의 예측 결과를 결합함으로써 단일 분류기에 비해 신뢰성 높은 예측 결과를 얻을 수 있는 방법으로 널리 사용되고 있다. 앙상블 분류기를 위해서는 여러 가지 방법이 사용되고 있으며 흔히 사용되는 방법으로는 부스팅이 있다. 하지만 부스팅은 단계적인 학습을 통해 이전 단계에서 잘못 분류된 샘플들을 다음 단계에서 다시 분류하는 방식으로 이전 단계로의 피드백이 불완전한 순차적인 방법이라는 한계가 있다. 이 논문에서는 단일 분류기 중 가장 성능이 좋은 것으로 알려진 SVM을 기본분류기로 사용하여 동시에 여러개의 SVM을 학습하는 문맥 감지형 SVM 앙상블알고리즘을 제안한다. 제안하는 방법에서는 특징 공간을 문맥으로 나누는 클러스터링과 SVM 학습을 동시에 진행하므로 특징 공간 분할과 학습이 서로의 결과를 사용할 수 있어 기존 앙상블학습에 비해 더 나은 결과를 얻을 수 있으며 이는 실험 결과를 통해 확인할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0