메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김명훈 (경북대학교) 김상욱 (경북대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.43 No.11
발행연도
2016.11
수록면
1,188 - 1,200 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
추천 시스템은 개인에게 고도로 개인화된 아이템을 제공함으로써 아이템의 선택과 소비과정에서 발생하는 과부하를 줄여주고 효율성을 증대시키는 중요한 역할을 한다. 본 연구에서는 전통적인 추천기법인 Content-Based(CB)기법과 최근 대두되는 Social Network-based(SN)기법을 접목하여 새로운 복합방식의 정보 추천 알고리즘을 제시한다. CB기법의 대표적인 한계점인 cold start problem과 SN기법에서 부족할 수 있는 추천 아이템의 전문성 문제를 상호 보완하는 형태가 되며, 특히 최근 소셜 네트워크의 특징인 비신뢰(non-trust) 기반의 영향력 있는 정보 확산자가 존재하는 환경에서 기법을 적용할 수 있도록 하였다. 또한 대부분 사람 추천 중심인 기존의 SN기법들과는 달리 사람에게 제공할 정보를 추천하는데 초점을 두며, 정보의 선정과정에서 개인의 소셜 네트워크와 실세계(real world)에서의 사회활동 정보를 모두 활용하여 더욱 더 개인화된 가치정보를 제공하고자 한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 정보 추천 알고리즘
4. 실험 결과 및 고찰
5. 결론 및 향후 연구 과제
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0