메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ryosuke Takeichi (Nagoya Institute of Technology) Noritaka Sato (Nagoya Institute of Technology) Yoshifumi Morita (Nagoya Institute of Technology) Kenji Komori (Matsunami General Hospital)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2015
발행연도
2015.10
수록면
816 - 819 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the rehabilitation field, there is a need for quantitative evaluation independent of the therapist’s subjective evaluation. In our previous work, we developed a binary-valued quantitative evaluation algorithm for the motor function of the shoulder joint based on sensor data from a test performed by therapists. In this paper, we developed a quantitative evaluation support system by implementing the binary-valued quantitative evaluation algorithm of the motor function and verified the effectiveness of the proposed system. The quantitative evaluation support system uses a three-dimensional force display robot that can imitate the test motion and the evaluation by the therapist. For this purpose, we analyzed the test motion and the evaluation by the therapist for ten subjects to determine two threshold parameters used in the binary-valued quantitative evaluation algorithm. In order to verify the evaluation accuracy in the test using the developed quantitative evaluation support system, we conducted the test using the developed system for three subjects. The sensitivity was 75% and the specificity was 75% in the test using the developed system. We plan to improve on the evaluation accuracy in our future work.

목차

Abstract
1. INTRODUCTION
2. EVALUATION OF THE SHOULDER JOINT FUNCTION IN THE CLINICAL SITE
3. CALCULATION OF THRESHOLD OF THE QUANTITATIVE EVALUATION ALGORITHM
4. EFFECT VERIFICATION OF QUANTITATIVE EVALUATION SUPPORT SYSTEM
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001917887