메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ali Dehghani (Islamic Azad University) Hamed Khodadadi (Islamic Azad University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2015
발행연도
2015.10
수록면
186 - 191 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Nowadays, flexible joint robots (FJR) manipulators are widely used at industry; however, these robots have several problems. These problems are in the joint and with links. Another problem is their complex dynamics that make control of this robot have some challenges. Non-linearity, interaction between loops and flexibility in the joint cause this problem. The present paper has focused to improve the tracking performance of these robots. Therefore, at the first step, we need to use physical relations of system and determine a model for the FJR. In this paper, the Fuzzy Logic Self- Tuning PID (FLST-PID) controller will be introduced to keep the rotating angle of the link of FJR at desired position. In the classic PID forms, the parameter values of the controller i.e. K<SUB>p</SUB> , K<SUB>i </SUB>, K<SUB>d</SUB> are calculated in many various methods like Ziegler-Nichols and are constant. In FLST-PID, the parameter values computed by intelligent methods like fuzzy logic and they vary during the controlling process.
For demonstrating the ability of the proposed controller, some classic controller like PID, LQR and State Feedback will be designed for FJR and the response of the system with these controllers will be compared. Moreover, by considering some uncertainty on systems parameters, the comparison will be performed once again. Simulation results confirm the claims and show that the proposed controller has the best response for the system especially in uncertainty conditions.

목차

Abstract
1. INTRODUCTION
2. System modeling
3. Design State Feedback, LQR and PID for FJR
4. Self-tuning PID controller base on fuzzy logic
5. Effect of uncertainty in system response
6. Conclusion
7. References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001910833