메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
석종원 (창원대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제18권 제11호
발행연도
2015.11
수록면
1,261 - 1,267 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The problem of underwater target detection and classification has been attracted a substantial amount of attention and studied from many researchers for both military and non-military purposes. The difficulty is complicate due to various environmental conditions. In this paper, we study classifier ensemble methods for active sonar target classification to improve the classification performance. In general, classifier ensemble method is useful for classifiers whose variances relatively large such as decision trees and neural networks. Bagging, Random selection samples, Random subspace and Rotation forest are selected as classifier ensemble methods. Using the four ensemble methods based on 31 neural network classifiers, the classification tests were carried out and performances were compared.

목차

ABSTRACT
1. 서론
2. 식별기 앙상블 학습
3. 실험결과
5. 결론
REFERENCE

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-004-002159916