메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
전성일 배건성 (경북대학교)
저널정보
한국음성학회 말소리와 음성과학 말소리와 음성과학 제7권 제4호
발행연도
2015.12
수록면
17 - 25 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
For blind source separation of convolutive mixtures, FDICA(Frequency Domain Independent Component Analysis) algorithms are generally used. Since FDICA algorithm such as Sawada FDICA, IVA(Independent Vector Analysis) works on the frequency bin basis with a natural gradient descent method, it takes much time to converge. In this paper, we propose a new method to improve convergence speed in FDICA algorithm. The proposed method reduces the number of iteration drastically in the process of natural gradient descent method by applying a weighted inner product constraint of unmixing matrix. Experimental results have shown that the proposed method achieved large improvement of convergence speed without degrading the separation performance of the baseline algorithms.

목차

ABSTRACT
1. 서론
2. FDICA 혼합모델 및 분리 알고리즘
3. FDICA 알고리즘의 아다마르 곱 형식 및 분리행렬의 가중 내적 제한조건 적용
4. 실험 및 검토
4. 결론
참고문헌

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-700-002320625