메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jae-Hoon Cho (Hankyong National University) Won-Pyo Hong (Hanbat National University)
저널정보
한국조명·전기설비학회 조명·전기설비학회논문지 조명·전기설비학회논문지 제30권 제4호
발행연도
2016.4
수록면
60 - 71 (12page)
DOI
10.5207/JIEIE.2016.30.4.060

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In a hybrid energy system, different energy sources (photovoltaic (PV), wind, diesel, etc.) as well as energy storage devices are connected together to supply the electrical load. Since the produced power of PV and wind turbine (WT) is dependent on the variation of the resources (sun and wind) and the load demand fluctuates, the main attribute of such hybrid systems is the ability of satisfying the load at any time and storing the excess energy for the later use in deficit conditions. This paper presents a methodology to size and to optimize a stand-alone hybrid PV/Wind/Diesel/Battery bank minimizing the Total annual cost and Loss of Power Supply Probability (LPSP) using a GA and PSO based optimization algorithm respectively. The effectiveness of the proposed method was verified by Matlab software.In this paper, first the mathematical model of various parts of hybrid system is presented. Then, the proposed algorithm is used. Finally, simulation results (number of PV panels, number of wind turbines, number of battery storages, system total cost,power diagram of hybrid power system components) for solar-wind -diesel systems is presented.The simulation results of the proposed approach show that the use of PSO can be more efficient than GA in the size optimization of hybrid energy system.

목차

Abstract
1. Introduction
2. Stand-alone hybrid PV-WT-DG-Battery systems
3. Modelling of hybrid power systems components
4. Cost modelling of hybrid power system
5. Size optimization algorithmsfor hybrid energy system
6. Conclusions
References

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-565-002773978